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The characteristics of near-wall turbulence are examined and the result is used to 
assess the behaviour of the various terms in the Reynolds-stress transport equations. 
It is found that all components of the velocity-pressure-gradient correlation vanish 
at the wall. Conventional splitting of this second-order tensor into a pressure diffusion 
part and a pressure redistribution part and subsequent neglect of the pressure 
diffusion term in the modelled Reynolds-stress equations leads to finite near-wall 
values for two components of the redistribution tensor. This, therefore, suggests 
that, in near-wall turbulent flow modelling, the velocity-pressure-gradient cor- 
relation rather than pressure redistribution should be modelled. Based on this 
understanding, a methodology to derive an asymptotically correct model for the 
velocity-pressure-gradient correlation is proposed. A model that has the property of 
approaching the high-Reynolds-number model for pressure redistribution far away 
from the wall is derived. A similar analysis is carried out on the viscous dissipation 
term and asymptotically correct near-wall modifications are proposed. The near-wall 
closure based on the Reynolds-stress equations and a conventional low-Reynolds- 
number dissipation-rate equation is used to calculate fully-developed turbulent 
channel and pipe flows a t  different Reynolds numbers. A careful parametric study of 
the model constants introduced by the near-wall closure reveals that one constant in 
the dissipation-rate equation is Reynolds-number dependent, and a preliminary 
expression is proposed for this constant. With this modification, excellent agreement 
with near-wall turbulence statistics, measured and simulated, is obtained, especially 
the anisotropic behaviour of the normal stresses. On the other hand, it is found that 
the dissipation-rate equation has a significant effect on the calculated Reynolds- 
stress budgets. Possible improvements could be obtained by using available direct 
simulation data to help formulate a more realistic dissipation-rate equation. When 
such an equation is available, the present approach can again be used to derive a 
near-wall closure for the Reynolds-stress equations. The resultant closure could give 
improved predictions of the turbulence statistics and the Reynolds-stress budgets. 

1. Introduction 
The modelling of near-wall turbulent incompressible flow began with the work of 

van Driest (1956) who introduced a damping function for the mixing length to 
account for viscous effects near a wall. Since then, modifications of two-equation 
closures have been introduced by Jones & Launder (1972) and a host of other 
researchers. Fairly complete reviews of the development of two-equation near-wall 
turbulence closures have been provided by Patel, Rodi & Scheuerer (1985) and 
Launder (1986). In  these reviews, attention was mainly concentrated on the k k  type 
closures and little discussion was directed to other two-equation closures, such as 
that proposed by Hanjalic & Launder (1976). Most closures reviewed by Patel et al. 
(1985) do not solve the transport equation of the true dissipation rate, 8, of the 
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turbulent kinetic energy, k. Instead, they solved an equation that governs the 
dissipation rate, 8, which is equal to the true dissipation rate minus its value at the 
wall. On the other hand, E is retained in the k transport equation. As a result, most 
researchers found it necessary to modify both the k and the E equations to account 
for viscous effects near a wall (e.g. Hoffmann 1975; Chien 1982), and to correctly 
reproduce the near-wall behaviour of k. This treatment is not quite correct because 
it leads to a near-wall behaviour of 8 - y2 (Chien 1982), where y is the coordinate 
normal to the wall, while, in fact, 8 - y near a wall (Shima 1988). Furthermore, even 
though the closures performed well for a wide range of turbulent flows (Pate1 el aZ. 
1985), they have to be modified for diffuser flow calculations (Lai, So & Hwang 1989). 
Therefore, further modifications of these closures are necessary if an asymptotically 
correct near-wall, two-equation turbulence closure is to be available. 

With the advent of supercomputers, many practical and complicated turbulent 
flows can now be calculated on a routine basis, even using more complex turbulence 
models such as Reynolds-stress closures. However, with some notable exceptions 
(e.g. Daly & Harlow 1970), nearly all studies in the past two decades or so invoked 
the wall-function approximations to describe the near-wall flow (Hanjalic & Launder 
1972; Launder, Reece & Rodi 1975). The wall-function approximations are based on 
the assumptions of equilibrium turbulence and constant shear stress near a wall. 
These assumptions are less likely to be valid for complex turbulent wall shear flows 
and hence the need to develop near-wall Reynolds-stress closures. Efforts towards 
this direction have been made by Hanjalic & Launder (1976), by Prud’homme & 
Elghobashi (1983), by Kebede, Launder & Younis (1985), by So & Yo0 (1986), by 
Launder & Tselepidakis (1988) and by Shima (1988), among others. With the 
exception of Hanjalic & Launder (1976) who solved the transport equations for the 
shear stress and k only, all other closures solved the Reynolds-stress transport 
equations suitably modified to account for viscous effects near a wall. 

A common assumption made in all these closures is the splitting of the velocity- 
pressure-gradient correlation into a pressure diffusion part and a pressure 
redistribution part. The argument is then made that, since pressure diffusion is small 
across a wall shear layer (Laufer 1954), it can be neglected, even when the near-wall 
flow is modelled. Furthermore, it is also argued that, since viscosity does not appear 
explicitly in the Poisson equation for the fluctuating pressure, the high-Reynolds- 
number form of the redistribution model is also applicable for near-wall flow 
calculations. As a result, only the high-Reynolds-number isotropic form of the 
viscous dissipation rate model (e.g. Kolmogorov 1941) is modified to account for 
anisotropic behaviour near a wall. Even though the modifications (e.g. Hanjalic & 
Launder 1976; So & Yo0 1986) are not asymptotically correct as a wall is 
approached, the closures performed well for a wide variety of complex shear flows, 
including flows with wall transpiration (So & Yo0 1987), with sudden expansion (So 
et aE. 1988; Yo0 & So 1989) and with rotation (Yoo, So & Hwang 1990). On the other 
hand, Launder & Reynolds (1983) proposed an asymptotically correct near-wall 
dissipation model and it was applied by Kebede et al. (1985) to calculate periodic flow 
through a pipe. Reasonable agreement with measurements was achieved. Shima 
(1988) proposed a Reynolds-stress closure based on Lumley’s (1980) rearrangement 
of the viscous dissipation and redistribution terms and a proposed modification for 
the wall correction of Launder et aZ.’s (1975) redistribution model. His results showed 
limited success for fully-developed pipe flow calculations. 

All the above near-wall Reynolds-stress closures employed a dissipation-rate 
equation to close the set of governing equations. The dissipation-rate equation used 
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was either similar to the one employed in two-equation k- closures (Pate1 et al. 1985) 
or to the one proposed by Shima (1988). Since these dissipation-rate equations are 
derived in an ad hoc manner, their deficiencies could have a significant effect on the 
performance of the near-wall Reynolds-stress closures. Furthermore, some com- 
ponents of the redistribution model do not go to zero as the wall is approached, thus 
rendering the modelled Reynolds-stress equations incorrect near a wall. A 
consequence of this incorrect modelling is the inability to predict the anisotropic 
behaviour of the normal stresses near a wall (Hanjalic & Launder 1976; So & Yo0 
1986). I n  view of these shortcomings, the near-wall Reynolds-stress closures are also 
not asymptotically correct as a wall is approached. Therefore, further modifications 
are necessary. 

Based on the above discussion, it is clear that, in order to arrive a t  an 
asymptotically correct near-wall Reynolds-stress closure, improvements on the 
modelling of the Reynolds-stress equations as well as the dissipation-rate equation 
are required. Recognizing the difficulty of accomplishing this overall objective at this 
time, it is proposed to make a first attempt to formulate a general approach to derive 
an asymptotically correct near-wall closure for the Reynolds-stress equations using 
available high-Reynolds-number models for pressure redistribution and viscous 
dissipation and an existing dissipation-rate equation. When a more correct 
dissipation-rate equation and better high-Reynolds-number models based on stress 
invariant analyses are available, the proposed approach can again be used to derive 
an asymptotically correct near-wall Reynolds-stress closure. In order to illustrate the 
approach, a specific near-wall Reynolds-stress closure is proposed. It is based on the 
high-Reynolds-number model of Launder et al. (1975) for pressure redistribution and 
Kolmogorov’s (1941) model for viscous dissipation far away from a wall and on 
Shima’s (1988) low-Reynolds-number dissipation-rate equation. The validity of the 
approach and the proposed closure is verified by comparison with the simulation 
data of Kim, Moin & Moser (1987), the measurements of Laufer (1954) and 
Schildknecht, Miller & Meier (1979) and the model calculations of Hanjalic & 
Launder (1976), So & Yo0 (1986) and Chien (1982). Finally, the ability of the closure 
to predict the simulated terms of the budgets of (Mansour, Kim & Moin 1988) 
is also examined. 

2. Near-wall behaviour of the Reynolds-stress equations 

be conveniently written in Cartesian tensor form as 
The Reynolds-stress transport equations for an incompressible turbulent flow can 

or symbolically as C ,  =D$+D;+P,j+@$--i j ,  (2) 
where xi is the ith component of the coordinate, ui and Ui are the i th components of 
the fluctuating and mean velocity, respectively, p is the fluctuating pressure, p and 
v are fluid density and kinematic viscosity, respectively. With the exception of @& 
the near-wall behaviour of every term in (2) can be analysed if the behaviour of ui 
and Ui near a wall is known. Thus, (2) can be used to analyse the asymptotic 
behaviour of @; near a wall. 
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TABLE 1 .  Near-wall behaviour of @$ 

The following expansions for ui can be assumed in the near-wall region, or 

(3) i u = a,y+a,y2+a3y3+ ..., 

w = c1y+czy~+c3y3+  ..., 
v = b,  y +  b, y2 + b, y3 + . . . , 

where ui = (u, w, w) and xt = (2, y, z )  are substituted and y is taken to be normal to the 
wall, x is the stream direction and z is normal to the (x, y)-plane. The coefficients ai, 
bi ,  ci are random functions of time and x and z ,  but not y.  Since ui has to satisfy the 
divergence condition because of incompressibility, it can be shown that b, zz 0. With 
these expansions, the linear behaviour of u'/u, (where u' = (z);, u,2 = ~ , / p  and r, is 
the wall shear stress) near a wall as indicated by the measurements of Kreplin & 
Eckelmann (1979) can be recovered. For a two-dimensional flow, the above data also 
shows that U - y near a wall, where Ui = (U,  V ,  0 ) ,  and continuity requires that V - 
y2. The behaviour of @$ can now be analysed and the result is tabulated in table 1 
according to the rearranged form, @: = C,* - Dz - D;, -&, + eZj. 

The above analysis shows that C,, D$ and <, go to zero a t  the wall like y", where 
n 2 3. On the other hand, eii and D;, are dominant near a wall and their difference 
has to be compensated by @$. If a model for @$ is chosen such that @$ is exactly zero 
a t  the wall but fails to balance the difference (ei3-Dij), a t  least to the lowest order, 
then the model cannot be expected to mimic the anisotropic behaviour of near-wall 
turbulence very well. Therefore, i t  is important to propose a near-wall @$ model 
which can provide balance to the difference (eij-D&). Since DZ is of order y"(n 2 3) 
in the near-wall region, it can be approximated by high-Reynolds-number models. In 
the following, the models for D: and ei, are first discussed. Then the rationale for 
modelling @$ is outlined and a proposal made for @$. Finally, an asymptotically 
correct dissipation-rate equation is presented to complete the closure of (2). 
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3. Near-wall Reynolds-stress closure 
Numerous models have been proposed for D:. Among these, the four commonly- 

used models are due to Daly & Harlow (1970), Hanjalic & Launder (1972), Shir 
(1973) and Cormack, Leal & Steinfeld (1978). All four models expressed u,u3~, in 
terms of and their gradients. Consequently, the near-wall behaviour of these 
models is consistent with that shown in table 1 for D:. At least, none of the D: 
models goe to zero like y2 near a wall. In their study of third-order closures, Amano 
& Goel (1987) found that the model of Hanjalic & Launder (1972) gave the best 
overall results for the backward-facing step flow considered. Furthermore, in the 
near-wall region, the contribution of L); to the Reynolds-stress equations is small 
compared to that due to D;, (Laufer 1954; Hanjalic & Launder 1976; Mansour et al. 
1988). In  view of this, the model proposed by Hanjalic & Launder (1972) for D; is 
adopted here ; namely, 

where C,  is a model constant. 

k = $pq and E = v(au,/ax,)2, it can be shown that near a wall 
The near-wall behaviour of etj is given in table 1. If (3) is assumed for uI, then, since 

_ _  
k = ~(a;+c;)yz+(a,++)y3+&ly4+O(y5), (5 )  

E = v ( a ; + c ; ) + 4 v ( ~ + ~ )  y + ~ v y 2 + ~ ( y 3 ) ,  (6) 
- _  

_ _  
where A = Z + 2 a , + + ; + c ; + 2 q q c , ,  

According to Launder & Reynolds (1983), in the vicinity of a wall, the behaviour of 
e U / q  can be deduced from (3), (5) and (6) as 

Therefore, the near-wall behaviour of et, as given in table 1 can be satisfied by (7)-(9). 
Introducing the unit vector n, = (0,1,0) to mark the normal direction to the wall, a 
model for E$* can be proposed along the suggestions of Hanjalic & Launder (1976), 
Launder & Reynolds (1983) and Launder & Tselepidakis (1988); namely, 

where f,, = exp [ - (BT/150)2] with R, = k2/vE essentially guarantees that cij will 
asymptote to Kolmogorov's (1941) model far away from the wall. The model differs 
slightly from that of Launder & Tselepidakis (1988) because it is not necessary to 
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invoke the assumption that 2 is small compared to 2 (or 2) in the ell (or E ~ ~ )  term. 
Therefore, (10) gives, the correct behaviour near a wall since R, goes to zero like y4 
and f w , l  goes to 1 quickly as the wall is approached. Furthermore, (10) contracts 
properly to 2s. 

In high-Reynolds-number closure of (2), the term @$ is divided into two parts; 
namely 

@$ = @$ + @,,, (11) 

where 

P au, 3 @ . - - - +  %5 - pCa,a.,l . 

@$ is known as the pressure diffusion part and @, is interpreted as pressure 
redistribution. Since @ f i  is small compared to D$ for high-Reynolds-number flow 
(Laufer 1954), it  is normally neglected in Reynolds-stress closures. As a result, @$ 
with a non-zero trace is now replaced by @,, with a zero trace. In  order that the 
model proposed for Ggj is tensorially correct, it  should also have a zero trace. 
Therefore, the Qi, model cannot replicate the behaviour of @$ correctly near a wall. 
According to table 1, the various terms in (2) will be out of balance in the near-wall 
region and the closure will not be able to perform well because G2, and Q12 are of 
order yo and QIl, GZ2, @,, and @,, are of order y1 owing to a non-vanishing p a t  the 
wall. On the other hand, most models for Qi5 perform well far away from the wall 
(Mansour et al. 1988) and essentially validate the splitting of @$ according to (1 1) and 
the neglect of @$ for high-Reynolds-number flows (Launder et al. 1975). In  view of 
this, it is suggested that @$ be modelled in such a way that far away from the wall 
@$ should approach Qgj. However, in the near-wall region, the model would balance 
the term (c i j -D&),  a t  least to the lowest order shown in table 1 for each component. 
Several alternatives are available for the modelling of @$ in the near-wall region. 
One, of course, is to model @$ by a diffusion term in the near-wall flow. However, this 
approach requires the asymptotic behaviour of @ f i  very near the wall to be known. 
Since this is not known a priori, this approach is not fruitful. Another approach is to 
model @$ near a wall, because its near-wall behaviour is known from table 1. 
However, the proposed model should asymptote correctly to Gij far away from a 
wall. Based on this argument, the following proposal is made for @$; namely, 

where f,, is introduced to guarantee the disappearance of Qij9 far away from the 
wall. It should be pointed out that @ii,wfw,l is not proposed to model the term @$ 
alone. Rather, it should be interpreted as the model for the pressure diffusion term 
@$ plus the adjustment for the incorrect modelling of GZ, near a wall. 

The proposal for @ii,w depends to a large extent on the model for Qij. Since 
Launder et aZ.’s model (1975) for Qgj accounts for both turbulence and mean-strain 
effects and is quite successful for a wide variety of complex flows, it is adopted for 
Gij as a first attempt to derive a closure for the Reynolds-stress equations. The model 
for @,,, therefore, is 
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Modelled 
y term @: 

TABLE 2. Near-wall behaviour of @$$ and the modelled @: 

where 

F = 1pii, a = -( :, 8+C2),  p = &(SC2-2), y = &(30C2-2) and C, and C, are model 
constants. With the model for Gij specified, its behaviour near a wall can then be 
analysed using (3). The result is given in table 2. 

The modelling of @ij,w should be such that it would compensate for the incorrect 
behaviour of the C, term while providing additional terms to balance ( C ~ , - D ; ~ ) .  
Furthermore, according to Shima (1988) and Launder et al. (1975), Gij, should also 
provide additional terms to account for wall reflection effects in the not-too-near-wall 
region. Taking all these considerations and the model for eil into account, a 
reasonable proposal would be 

E 
@i,,w = C, (--& k) -- (-nknj + w n k  ni) + a*(&,-&,F), (16) k k 

where a* is a model constant introduced by Shima. Based on (14), (15) and (16) for 
@$ and (10) for e2,, the near-wall behaviour of the modelled @$ term can now be 
evaluated and the result is listed in table 2 for comparison with the behaviour of the 
actual @$ term. It can be seen that the modelled @$ term is correct to y3 for the @& 
component, to  y2 for the @T2 and components and to y for all other components. 
The a* term is not important for small y but is of the same order as the other two 
terms as y increases away from the wall. 

It should be pointed out that even though the present model for @$ behaves 
correctly near a wall, an attempt to deduce the shape of pu, across the whole flow 
from the @$ model may not be fruitful. This could be seen by considering fully- 
developed channel flow. For such a flow, @$ = @fi = @tzc,wfw, = - ( 2 / p )  (dpldy) .  
Since Qii, f,, is only valid near a wall, strictly speaking, the shape of p across the 
whole flow cannot be correctly deduced by integration to the channel centreline. I n  
the near-wall region, the shape of p@ is given by 
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and is only valid up to y s ,  which is the location where @: 2: Qi,. If the integration is 
carried out to y = $H, where H is the channel width, it  will give the unacceptable 
condition of p being finite either a t  the wall or a t  the channel centreline. 

It should be further pointed out that models (lo), (14) and (16) do not necessarily 
represent the best models for et, and @& They represent the results of a first attempt 
to derive an asymptotically correct near-wall Reynolds-stress closure based on 
available high-Reynolds-number models for eij and @$. If physically more correct 
models for these terms are available, such as the modelling attempt of Launder & 
Tselepidakis (1988) from stress invariant consideration, then the present approach 
can again be used to derive the required near-wall models for eii and @:. 
Furthermore, if direct simulation data on p is available, they could be used to 
estimate the behaviour of @$ near a wall and, perhaps, a way could be found to 
model the near-wall behaviour of @g directly. For the present, modelling @$ near a 
wall seems to be a reasonable alternative. 

4. The dissipation-rate equation 
Since 6 is introduced into this problem through models (4), (lo), (15) and (16), a 

transport equation for E is required to complete the closure of (2). Hanjalic & 
Launder (1976) proposed an equation for e that was supposed to be valid for near- 
wall flows. The equation can be written as 

where is an additional production term related to the mean field, 8 = E -  2 ~ ( a k ; / a y ) ~ ,  

behaviour of this equation has been analysed by Shima (1988). He found that an 
additional term, 

f = 1-2  eexp [ - (32T)2] and C,, C,, and C,, are model constants. The near-wall 

has to be introduced into (17) to fulfil the coincidence of &/at and a(vazk /ax jax j ) /a t  
at the wall. This requires that ae/at = a(va2k/ax,ax,)/at = -2v2B+ 12v2A. The 
function fw,2  = exp [ - (RT/64)2] is specified to guarantee that 6 goes to zero outside 
the near-wall region and the high-Reynolds-number form of the equation is 
recovered. In (18), Cis defined as ( ~ - v a ~ k / a x * a x , ) .  Shima also argued that since $ 
essentially enhances 6 generation in the immediate vicinity of a wall, its complex 
form can be avoided by replacing the term ($+ C,, & / k )  by C,,( 1 + ufw,2) e l k ,  
where cr = 1 has been suggested by Shima (1988). However, in the present study cr 
is found to be Reynolds-number dependent and its value will be discussed later. 

The form of C = 6 - v a2k/ax, axj proposed by Shima is not convenient numerically, 
because it involves the second derivatives of k in a region where k changes rapidly. 
A more convenient and numerically stable form for C is found to be 

2vk 
E* = E - -  

Y2 . 
If Fin P / 2 k  is replaced by (19) and Bin eC/k is replaced by 8, then the resultant form 
satisfies the coincidence condition and the near-wall behaviour examined by Shima. 
Consequently, the wall boundary condition for E is e = 2v(ak$/ay)* as y+O, rather 
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than the condition s = u a2k/axj axi. Later calculations show that this modification 
leads to rapid convergence of the governing equations for fully-developed channel 
and pipe flows and little or no oscillations of the numerical results. 

5. An asymptotically correct k-E closure 
Contraction of (1)  with the substitution of models (4), (lo), (15) and (16) gives 

where uk is a model constant and ut = C, f ,  k 2 / e  and f, = 1 - exp ( -  C ,  yu,/v) have 
been introduced to simplify (20). In the original equation for k, the diffusion 
coefficients are not isotropic. However, in anticipation of the gradient transport 
assumption, an isotropic ut is postulated. Therefore, it is necessary to introduce the 
function f, with model constant C3 to account for reduced diffusion of k near a wall. 
This approximation is consistent with other proposals (Reynolds 1976; Lam & 
Bremhorst 1981 ; Chien 1982). The asymptotically correct k transport equation can 
be solved together with the modified near-wall form of (17) to give k and s. The 
gradient transport assumption is made to complete the closure, and this gives the 
following equations for the asymptotically correct k-s closure of turbulence : 

In view of the fact that -- is given by (23), the turbulent diffusion term a(C,(k/s)  
z& (ae/ax,))/axk in (17)  is again approximated by a((u,/u,) (ae/ax,))/ax,, where the 
constant C, is now replaced by a,. 

This set of equations is different from those examined by Pate1 et al. (1985). Here, 
the true dissipation rate B is solved with E = 2 ~ ( a k ~ / ~ y ) ~  specified a t  the wall. 
Furthermore, the correction to the k-equation is given by the term fw,l(s/k) (.;"), 
which represents the anisotropic behaviour of the modelled @$ term, rather than by 
terms like 2uk/y2, 2~(ak;/ay)~, etc., which do not represent the anisotropy of the 
velocity-pressure-gradient correlation. Near a wall f,, l(s/lc) (2) is much smaller than 
e and the viscous term in (21), because v 2  N y4, and is practically zero away from the 
wall. Therefore, it  can be neglected. Consequently, with the exception of the term 
a(v(ak/i3xj))/axi, (21) reduces to the high-Reynolds-number form. The reason the 
other researcher (e.g. Hoffmann 1975; Chien 1982) have to propose a modification to 
the k-equation for near-wall turbulence is because they are solving for P rather than 
E .  On the other hand, the s-equation has to be modified for near-wall flow modelling. 
As a result, the near-wall k - s  closures proposed by Reynolds (1976) and Lam & 
Bremhorst (1981), where they solved for E but with no additional near-wall terms 
added to either the k- or the €-equation, are also asymptotically incorrect near a wall. 
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6. Fully-developed pipe flow equations 
A cylindrical coordinate system (2, r ,  0 )  is chosen so that the fully-developed mean 

and fluctuating velocities in a pipe of radius R are given by (U,O,O) and (u , v ,  w), 
respectively. The governing equations for this fully-developed pipe flow, written in 
terms of the proposed near-wall Reynolds-stress closure, are : 

The model constants are the same as those specified by Hanjalic & Launder (1972, 
1976), by Launder et al. (1975) and by Shima (1988). For completeness, they are 
given here as: C, = 1.5, C, =0.4, C,, = 1.35, C,, = 1.8, C ,=O. l l ,  C,=O.15 and 
a* = 0.45. Hanjalic & Launder (1976) and subsequently So & Yo0 (1986) found it 
necessary to multiply the stress production term of (28) by a wall damping function 
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FIGURE 1. Comparison of modelled and simulation results for shear stress. 
___ , Kim et al. 1987; -, present model. 

to bring into balance near a wall the shear production with the other terms in (28). 
This arbitrary damping is unacceptable because the production term is exact and 
should not be modified. Hence, no such modification is used for the present near-wall 
model. The necessity of the damping function is just another indication that the 
near-wall model is not quite asymptotically correct. 

Since the flow is axisymmetric, only boundary conditions at  the wall and a t  the 
symmetry line are required. These can be specified as: 

-0 ,  m=O a t r = 0 .  
_ -  ds d? d p  d z  
dr dr dr dr 

--=-- 

Here, y = R - r  is taken as positive away from the wall. 
A similar set of equations can also be written down for the k-s closure. The model 

constants are again taken to be the widely-accepted values : vk: = 1 .O, us = 1.3, C, = 
0.0115 and C, = 0.09. Therefore, in both the Reynolds-stress and k-e closures, all 
conventionally accepted constants for the high-Reynolds-number models are 
adopted. Similar sets of Reynold-stress and k-e closure equations for channel flows 
can also be written down. Since they can be straight-forwardly obtained using 
Cartesian tensors, the channel flow equations are not reported here. 

The governing equations are ordinary differential equations, therefore, they can be 
solved by any iteration scheme for split boundary-value problems (Na 1979). Here, 
the Newton iteration scheme used by So & Yo0 (1986) is adopted. The dependent 
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FIGURE 2. Comparison of modelled and simulation results for the normal stresses. 

-__ , Kim et al. 1987 ; -, present model. 

variables are normalized by u, and u;/R while the r coordinate is normalized to 
become y+ = u,(R-r)/v. Integration from the pipe wall to the symmetry line is now 
carried out from y+ = 0 to y+ = Re = u,R/v. Since Re = (uT/2U,) Re,, where Re, is 
defined as 2RU,/v and U, is the mean bulk velocity, it serves as the only input 
parameter to the solution of (24)-(29) subject to boundary conditions (30) and (31). 

The non-uniform grid proposed by So & Yo0 (1986) is used for the present 
calculations. A total of 51 grid points are specified for the range 0 < y+ <Re, with 5 
points specified between y+ = 0 and 5 and 15 points located in the region 5 < y+ < 
65. With this grid spacing, convergent solution satisfying an accuracy criterion of 
< for the residuals is possible after about one thousand iterations. 

7. Comparison of the turbulence statistics 
Two model constants, (T and a*, are introduced in the near-wall Reynolds-stress 

closure. The other constants are associated with the high-Reynolds-number models 
adopted for the present proposal. Since these latter constants are well tested by other 
researchers, it  seems prudent not to attempt to vary their values to fit measurements 
or direct simulation data. After all, the present proposed near-wall closure should 
asymptotically approach the high-Reynolds-number closure of Launder et al. (1975) 
far away from a wall. Although u = 1.0 and a* = 0.45 are the reported choice of 
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Shima (1988), recent work by Mansour, Kim & Moin (1989) suggested that these 
constants might be Reynolds-number dependent. Initial calibrations of these 
constants with channel and pipe flow measurements a t  Re, > 20000 reveal that u = 

1.0 and a* = 0.45 are indeed appropriate va iues for the closure. However, in the light 
of the low-Reynolds-number simulation data of Kim et aZ. (1987), the k modelling 
analyses of Mansour et al. (1989) and the suggestion of a reviewer, a thorough 
parametric study of these two constants was carried out using both channel and pipe 
flow measurements and direct simulation data. Thus, the Re, range covered varies 
from 6600 for Kim et aZ.’s (1987) data to 50000 for Laufer’s (1954) measurements. 
The result shows that the calculated turbulence statistics are not much affected by 
varying a* and that a* = 0.45 seems to give the overall best correlation with 
simulation data and measurements. On the other hand, just as Mansour et al. (1989) 
pointed out, (T is found to be Reynolds-number dependent. Based on this parametric 
study, a preliminary expression is proposed for u, such that 

r~ = 1.0-0.6exp -- [ 21. 
It should be cautioned that (32) is valid for the e-equation (17) only. When a different 
s-equation is used to close (2) or a data set covering a larger Reynolds-number range 
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is used to calibrate u, another u expression might result. With the constant u and a* 
thus determined, the proposed near-wail Reynolds-stress and k-e closures are 
validated against measurements and direct simulation data. 

The comparison with Kim et aZ.’s (1987) data is shown in figures 1-3. The channel 
flow Reynolds number, Re, based on u, and +H is 180, or Re, = U,, H / v  = 6600. This 
gives a u x 0.7 according to (32). Only the results of -m7 the normal stresses and 
k are shown. These are plotted with -m/u:, u’/u,, w’/u,, v’/u, and k/u,2 versus 
(1 - y / H ) .  Here, the prime is used to denote the r.m.s. value. The near-wall behaviour 
is shown in the inset of each figure in terms of yf. Since the mean U only depends on 
-m (see equation (24))’ a correct -ED prediction also gives a correct prediction for 
U and vice versa. Therefore, it  is not necessary to show the U comparison. As for E ,  

its comparison will be shown later in the k budget presentation, therefore, it is not 
necessary to repeat the e comparison here. 

I n  general, the overall comparisons are very good. The shapes of -m7 w‘ and v’ 
are essentially identical to those of direct simulation in the region 0 < y+ < 10 
(figures 1 and 2). A small discrepancy exists in the comparison of u’ and this leads 
to  corresponding slight disagreement in k (figure 3). Furthermore, the maximum u’ 
is under-predicted while the meximum w’ is over-predicted. The net result is an 
under-prediction of the maximum k. It should be pointed out that the maximum of 
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k, u’ and w’ are influenced by a*. This aspect of the proposed near-wall Reynolds- 
stress closure is consistent with other closures and could also be a consequence of the 
rather ad hoc e-equation. More will be said about the e-equation in the discussion of 
the comparison of the Reynolds-stress budgets. 

Two sets of fully-developed pipe flow measurements at different Reynolds 
numbers are selected to further validate the present closures. These are the data of 
Laufer (Re = 1052 or Re, = 50000) and Schildknecht et al. (Re = 489 or Re, = 
21 750). At these Re,, Q x 1.0 according to (32). The calculations are also compared 
with the Reynolds-stress predictions of Hanjalic & Launder (1976) and So & Yo0 
(1986), designated HL and SY, respectively, and the k- results of Chien (1982) and 
Lam & Bremhorst (1981), designated CH and LB, respectively. 

The comparisons are made in terms of U+ = U/ur versus in y+, k/u,2, u‘/ur, v’/u,, 
w’/u, - and &/u: versus (1 - r / R )  and the structure parameters m/k, ?/k, 2 / k  and 
w2/k  versus (1 - r / R ) .  Results for the Reynolds-stress closures are shown in figures 
4-12 while predictions of the k- closures are compared in figures 13-17. The near- 
wall behaviour of all the parameters except U+ are shown in the inset of each figure 
in terms of y+ rather than (1  - r / R ) .  Thus, the agreement, or lack thereof, between 
calculations and measurements in the near-wall region is clearly illustrated. 
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As pointed out by So & Yo0 (1986), the U+ profiles obtained by integrating (24) 
using the measured wv are in much better agreement with the SY and CH closure 
results, thus indicating that there is a slight discrepancy between the measured m 
and U in both sets of data. In view of this, the discrepancy shown in figure 4 between 
calculations and data cannot be attributed to model deficiency and all model 
calculations of U+ can be considered to be in good agreement with measurements. 

The linear behaviour of -m is essentially guaranteed by (24). Therefore, all 
Reynolds-stress closure calculations are in excellent agreement with measurements 
in the region (1  -T /R)  2 0.2 (figure 5). The ability of the closures to mimic the near- 
wall behaviour of -W is illustrated in the inset of figure 5.  There again, the closures 
tested are doing very well, including the correct prediction of the Reynolds-number 
effect near a wall. On the other hand, the discrepancies between different closure 
calculations start to show up in the predictions of k and E (figures 6 and 7). Among 
the three Reynolds-stress closures considered, the present calculations give the best 
agreement with data (figures 6 and 7) .  The SY closure over-predicts the maximum 
for both k and E ,  while HL under-estimates both quantities. Both SY and HL 
closures give a slightly higher k than measurements in the pipe centre, compared to 
a correct prediction by the present closure (figure 6). This result confirms the 
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necessity of modelling turbulent diffusion by an anisotropic model and the inclusion 
of the pressure diffusion effect in the modelled equations. The calculated anisotropic 
behaviour does not come from turbulent diffusion alone. It is also influenced by the 
modelling of Qs,. According to So & Yo0 (1986), if Rotta’s (1951) return-to-isotropy 
model is assumed €or Gi, then k is also over-predicted in the pipe centre. This means 
that, even for such a simple shear flow, it is important to account for the mean-strain 
effect in the modelling of Qij. It should be pointed out that the e values at the wall 
obtained from Reynolds-stress closures depend on the boundary conditions imposed 
on e. The SY closure uses Chien’s s-equation, therefore, the predicted e goes to zero 
a t  the wall. 

The calculated normal stresses for the two sets of data are shown in figures 8 and 
9. It is in this comparison that the strength of the present Reynolds-stress closure 
really shows up. The model correctly predicts the anisotropic behaviour of the 
normal stresses in all three components and throughout the whole pipe. It also 
predicts the correct maximum for all the normal stresses including the effects of 
Reynolds number. All other closures fail to replicate the data correctly and 
essentially verify the importance of having an asymptotically correct model for @:. 
It should be pointed out that the correct near-wall (y’ < 10) anisotropic behaviour 
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of u', v' and w' is affected by the first two terms in the model for Qju,,, while the 
correct maximum is influenced by the u* term in the model. This is why the 
partitioning of @$ into "5 and Gij is not valid for near-wall flow and @$ has to be 
modelled as suggested in (14). 

Further validation of the need to model @$ in the near-wall region is provided by 
a comparison of the structure parameters (figures 10-12). The results show that the 
present Reynolds-stress closure not only provides the best predictions for all the 
- structure parameters, but also reproduce the correct asymptotic behaviour of u"/k, 
w 2 / k  and G / k  near the wall (figures 11 and 12). Both the HL and SY closures give 
a completely incorrect trend for the predictions of G/k and p/k in the region, 0 < 
y+ < 25. Furthermore, the present closure replicates the ? / k  behaviour in the 0 < 
y+ < 75 region correctly, which no other closure can do. This success is entirely due 
to  the correct asymptotic behaviour of the Q j i j ,  and eij models. Since Shima's (1988) 
proposed @u,w model does not have the proper asymptotic behaviour near a wall, it 
is expected that his model also cannot correctly predict the behaviour of G/k, p/k 
and G / k  in the near-wall region. 

It should be pointed out that, in spite of numerous attempts, a convergent solution 
to the LB closure cannot be obtained. The difficulty is traced to an imbalance in the 
e-equation in the near-wall region. Improving the initial guess, such as specifying the 
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convergent solution of the CH closure as initial values for all variables, also fails to 
produce a convergent solution of the LB closure. This kind of difficulty does not exist 
for other k-e closures that have been examined in this study. Therefore, subsequent 
comparisoins shown in figures 13-17 are only carried out between the present k-e 
closure, the CH closure and measurements. 

The mean velocity and shear stress predictions are compared in figures 13 and 14. 
As expected, both the present k- and CH closure calculations are in good agreement 
with measurements and the Reynolds-number effect is correctly predicted. The 
discrepancy noted in the mean U comparison (figure 13) is again traced to the slight 
inconsistency found between the measured WB and U in both sets of pipe Aow data. 
There is also not much difference between the CH and the present k--E closure in the 
prediction of k and e (figures 15 and 16). Both closures cannot correctly predict the 
centreline k value and overestimate the maximum k (figure, 15). Even though the k--~ 
equations for the present closure are asymptotically correct and those for the CH 
closure are not (because in the CH closure Eis required to behave like y2 near a wall), 
the CH model predictions show better agreement with both sets of data. The reason 
lies in the choice of f,. In the CH closure, v, is actually given by vt = C,, f, k2/L 
Therefore, the present k- closure should use a slightly larger value for C ,  to 
compensate for the larger -E used in the definition of v,. The k result for the Laufer 
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experiment obtained with C, = 0.02 is also shown in figure 15 and a much improved 
agreement with data is obtained. This shows that the incorrect near-wall behaviour 
of the CH closure is partially compensated by the choice of fp and the incorrect 
definition for vt. For the present k-e closure, a much larger C,  is called for. However, 
an optimization study has not been carried out to determine the correct value for C,. 

Finally, the k-e closures gives a poor prediction of the structure parameter, -m/k 
(figure 17). However, their predictions are better than the HL result (compare figures 
10 and 17). Since the k--E closures cannot replicate turbulent diffusion in all three 
directions correctly, there is no reason to expect them to give a correct prediction of 
-7a;Olk. The poor performance of HL, on the other hand, is traced not to a lack of 
anisotropic turbulent diffusion but to an incorrect near-wall behaviour of the 
modelled equations. 

8. Comparison of the Reynolds-stress budgets 
Direct simulation of a fully-developed turbulent channel flow has recently been 

completed by Kim et al. (1987) and Mansour et al. (1988) a t  Re = 180. The results 
presented in the direct simulation studies included turbulence statistics (Kim et al. 
1987) and budgets of the Reynolds stresses and the dissipation-rate (Mansour et al. 
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1988). The near-wall Reynolds-stress closure has already been validated for its 
ability to replicate the turbulence statistics. Since Mansour et al. (1988) have 
examined various models for D:, @*$ and cij and their ability to predict the near-wall 
Reynolds-stress budgets and have come to the conclusion that they represent poor 
choices for the near-wall flow, a comparison of the present closure results with the 
calculations of Mansour et al. (1988) will further allow the individual models for DZ, 
@$ and e6, to be directly evaluated for their ability to replicate the flow in the near- 
wall region. 

The comparisons of the various terms in the budgets of tqq are shown in figures 
18-21. In  these figures, the model calculations are obtained assuming cr to be given 
by (32). According to Mansour et al. (1988), all the models considered for DG, @ij and 
eU compared favourably with the simulation data for yi 100. However, substantial 
disagreement occurs in the near-wall region, 0 < y+ < 50. Since the present closure 
modifications are proposed for near-wall flows only, it  would be appropriate to 
compare the near-wall closure's performance with simulation data in the region 

The terms in the budgets for 2 and 3 are compared in figures 18 and 19. In order 
to avoid clutter, the simulation data are shown in part (a )  of each figure, while the 
model calculations are given in part ( b ) .  The general trends of Dc and @$ in the region 
0 < y+ < 100 are approximately replicated by the near-wall turbulence closure. This 
implies that the proposed models for DZ and @$ are quite appropriate. However, the 
behaviour of -eU, in particular that of -ell and - E ~ ~ ,  is not reproduced correctly. 
The major difference occurs in the region 0 < yf < 30. Direct simulation results show 
that the maximum of -ell and -e33 occurs a t  the wall, while the closure results 
indicate the maximum of -ell and - eS3 at y+ 10. Furthermore, the calculated wall 
values of -ell and -ea3 vary from to $ of the simulation data. In spite of this, the 
balance between - eff and Di6 a t  the wall is satisfied. Consequently, the closure results 

0 < y+ < 100. 
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for Oll and Di3 a t  the wall are substantially smaller than those obtained from 
simulation. The behaviour of the various closure calculated terms in the budgets of 
w, in general, are in qualitative agreement with direct simulation data. There are 
two exceptions, though. These are the magnitudes of @z2 and - - E ~ ~  which are about 
two to three times larger than the simulation data in the region y+ < 100. This is due 
to the fact that the high-Reynolds-number model for ei, is isotropic, while the direct 
simulation results for -ell, - E ~ ~ ,  -eS3 show that they are quite anisotropic. The 
anisotropy extends over the whole channel. However, these discrepancies do not 
seem to affect the overall prediction of the turbulence statistics (figures 15 and 16). 

are shown in figures 20 
and 21. In figure 20, DL = lPii, 0: =lag, Pk =A&, @: =+@: and e =&ti .  As 
expected, a discrepancy in the k budget comparison also occurs in the behaviour of 
--E near and a t  the wall. The calculated wall value of --E is about 40% of the 
simulation data. As a result, the behaviour of @: in the region y+ < 20 is incorrect ; 
slightly negative away from the wall as compared to slightly positive in the 
simulation result. The near-wall trend of DT, though not the magnitude, is correctly 
reproduced by the model and shows that a gradient-diffusion assumption can be used 
to model DT. The magnitude of DT, of course, is affected by the value of C,, which 
for the present case is chosen as 0.11. A greater value of C, would increase the 

The comparisons of the terms in the budgets of k and 
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magnitude of DT, thus improving the agreement between model calculation and 
direct simulation. The comparison of the terms in the budget of rn (figure 21) is 
slightly more favourable than those shown in figures 18-20. In  particular, the model 
calculation of the behaviour of @& agrees with the direct simulation result, even the 
maximum reached by @pT, is in agreement. This means that the proposed near-wall 
@$ model is reasonable, a t  least for the channel flow considered, and further 
substantiates the need to model @$ rather than Qtr. The split of @$ into a,, and @$ 
and the neglect of @$ may be appropriate for flows far away from a wall, however, 
it is not valid for near-wall flows. This conclusion is substantiated by the findings of 
Mansour et al. (1988) and the present study. The calculated trend of L>Tz is similar to 
the simulation data but its maximum is about three times smaller than the 
simulation result. In view of these findings, it can be concluded that the correct 
modelling of ei, is crucial to the prediction of the terms in the budgets of w. Since 
the model for E ~ ,  invariably involves E ,  the modelled equation for E becomes an 
important element in any Reynolds-stress closure. 

In  order to further examine the effects of the modelled s-equation on the zp$ 
bu$ets, r~ = 0 is assumed and the calculation is repeated. The terms in the budget 
of u2 are shown in figure 18(c), while those of k are shown in figure 20(c). It can be 
seen that neglecting the extra E generation due to @ results in a -el, behaviour very 
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similar to that obtained from direct simulation. The maximum of -ell now appears 
at the wall and its value is equal to that given by direct simulation. Furthermore, Dill 
at the wall also increases to match the wall value of -ell. The magnitude and 
behaviour of @& are not affected by this change in u value. On the other hand, the 
prediction of 0: has been improved by setting u = 0 and the result becomes similar 
to that of direct simulation. Since - E ~ ~  is small compared to -ell, the behaviour of 
e is dominated by the behaviour of -ell. Consequently, in the comparison of the 
terms in the budget of E ,  the behaviour of the - e  term for the u = 0 case is also in 
agreement with the direct simulation data (compare figures 20a and 20c). Even 
though c has a significant effect on the budgets of u" and k, its influence on the 
budgets of -EU and 3 is small. The results are essentially the same as those shown 
in figures lO(6) and 21 (b) .  In spite of the improvements noted in the Reynolds-stress 
budgets, setting u = 0 gives predicted turbulence statistics that are in poor 
agreement with those shown in figures 1-3, especially in the region 0 < y+ < 20. This 
suggests that the weakest link in the present near-wall Reynolds-stress closure is the 
e-equation. Therefore, further improvements in turbulence modelling should be 
directed a t  modifying this equation rather than a t  the equations. On the other 
hand, if the objective is to predict the turbulence statistics alone, then the present 
e-equation is quite adequate. 
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9. Discussion 
The present study proposes an approach for the derivation of a near-wall 

Reynolds-stress closure. It is based on the premise that the modelled equations 
should have the same near-wall behaviour as the original equations. A further 
stipulation is that the models for the individual terms in the uiuj equations should 
be Reynolds-number independent far away from a wall. Therefore, once the high- 
Reynolds-number models are specified for the - equations, the near-wall 
corrections of these models can be deduced to satisfy the resultant near-wall 
behaviour of each term in the - equations. The near-wall Reynolds-stress closure 
thus derived is dependent on the high-Reynolds-number models used. If physically 
more accurate high-Reynolds-number models for DG, @$ and cij are available, such 
as models deduced from stress invariants, the present approach can again be used to 
derive the required near-wall modifications to these models. For example, if the 
model suggested by Lumley (1980) for @$ is used instead of Launder et aZ.'s model, 
the present approach can be applied to deduce a near-wall correction for Lumley's 
model. In  that sense, models that satisfied the realizability condition are equally 
suitable for the present approach. The Launder et al. model is chosen here, because 
of its simplicity, general acceptance and wide applicability, to illustrate the 
methodology of deducing a near-wall closure. 
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Up to now, only two-dimensional data has been used to validate the proposed 
near-wall Reynolds-stress closure. Therefore, its suitability for three-dimensional 
flows is still in question. However, indirect evidence of its suitability for three- 
dimensional flows can be found in other studies. A first attempt to use near-wall 
Reynolds-stress closure to calculate three-dimensional flows was made by Yo0 et al. 
(1991). They applied the closure of So & Yo0 (1986) to predict the developing 
entrance flow in an axially rotating pipe. Good agreement with measurements is 
obtained for the mean velocities as well as for the Reynolds stresses for several 
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different pipe rotation rates. The present model has also been applied by Lai et al. 
(1990) to calculate three-dimensional flows in a curved pipe. A substantial 
improvement in the predictions of the turbulence statistics is noted compared to the 
results obtained assuming conventional wall functions and high-Reynolds-number 
models for DC, cDij and su. Since the present closure performs better than the So & 
Yo0 (1986) closure in the near-wall region, in particular, in the prediction of the 
normal stresses, it should be more suitable for three-dimensional flows than the 
closure of So & Yo0 (1986). Nevertheless, direct verification of the closure beyond the 
study of Lai et al. (1990) is necessary before it can be claimed to be valid for three- 
dimensional flows. 

Finally, the success of the near-wall Reynolds-stress closure depends, to a large 
extent, on the correctness of the s-equation. Conflicting results concerning the 
suitability of the 9 term in the s-equation are obtained in the present study. On the 
one hand, inclusion of $(u =f= 0) in the s-equation gives rise to a correct prediction 
of the turbulence statistics, while the neglect of @(u= 0) leads to a correct 
replication of the behaviour of -ell and - s  in the budgets of 2 and k. Therefore, 
further work is needed to improve the rather ad hoe e-equation so that both the 
turbulence statistics and the terms in the budgets of- are in agreement with 
measurements as well as direct stimulation data. Nevertheless, extension of this 
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FIQURE 20. Comparison of the terms in the budget of k ;  (a) direct simuletion, (6) turbulence 

model, c given by equation (32), (c) turbulence model, c = 0. 

approach to model two-dimensional turbulent heat transfer near a wall indicates 
that the resultant near-wall heat flux model gives excellent prediction of the near- 
wall vertical heat flux (Lai & So 1990). 

10. Conclusions 
An asymptotically correct near-wall Reynolds-stress closure has been proposed. In 

order to achieve coincidence of all terms in the Reynolds-stress equations a t  the wall, 
it is found that the velocity-pressure-gradient correlation should not be partitioned 

22-2 
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FIGURE 21. Comparison of the terms in the budget of m; (a)  direct simulation, ( b )  turbulence 
model, u given by equation (32). 

into a pressure diffusion part, which is neglected, and a pressure redistribution part, 
which is modelled. The pressure diffusion part is important in the near-wall region 
and is responsible for the anisotropic turbulence behaviour near the wall. However, 
it is indeed negligible far away from the wall. This understanding is used to formulate 
a model for the velocity-pressure-gradient correlation that has a non-zero trace in the 
near-wall region but asymptotes correctly to the modelled pressure redistribution 
tensor far away from the wall. The viscous dissipation model is also modified to 
reproduce the correct near-wall behaviour. Thus formulated, the modelled and 
exact terms in the Reynolds-stress equations are in balance near a wall, just 
as they should be in the original equations. Closure of the Reynolds-stress equations 
is then provided by the modification of an existing s-equation that is also 
asymptotically correct as the wall is approached. A by-product of this study is an 
asymptotically correct k+ closure obtained by contracting the modelled Reynolds- 
stress equations and invoking the assumption of gradient transport. 

In  view of the rather ad hoc nature of the €-equation, the model constants 
introduced by the near-wall closures are first investigated for Reynolds-number 
dependence. As indicated by Mansour et at. (1989), u is found to depend on Re, and 
a preliminary expression is proposed for u. This is then used to calculate the channel 
flow data of Kim et al. (1987) and the pipe flow measurements of Laufer (1954) and 
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of Schildknecht et al. (1979) in a range ofRe varying from 180 to 1052. The calculated 
turbulence statistics compare favourably with those obtained from direct simulation. 
As for the comparisons with pipe flow measurements, it is found that by virtue of the 
isotropic assumption inherent in the gradient transport approximation, the k-s 
closure cannot correctly predict the turbulence energy at the pipe centre. Also, the 
damping function proposed for the eddy viscosity has a great effect on the predicted 
maximum turbulent kinetic energy near the pipe wall. On the other hand, the near- 
wall Reynolds-stress closure results substantiate the hypothesis that the velocity- 
pressure-gradient correlation should be modelled in its entirety in the near-wall 
region. Only then can the various terms in the modelled Reynolds-stress equations 
be balanced in the near-wall region just like the exact equations and the anisotropic 
behaviour of the normal stresses be predicted correctly near the wall. All other near- 
wall Reynolds-stress closures that rely on the modelling of the pressure redistribution 
part alone fail to correctly predict the near-wall behaviour of the normal stresses. 

Further verification of the near-wall Reynolds-stress closure is carried out with the 
Reynolds-stress budgets of Mansour et al. (1988). In this validation, the importance 
of having a correct s-equation in the closure is clearly brought out. For example, the 
presence or absence of extra s generation in the s-equation affects the predictions 
differently. If the extra c generation is present, the mean flow and the turbulence 
statistics are predicted correctly. On the other hand, in the absence of $, the -s and 
-ell behaviour in the budgets of k and 2 is replicated correctly compared to the 
simulation data. The behaviour of other terms in the budgets of zpj is also affected 
by this extra E generation term. This implies that a more physically based e-equation 
is required. However, the turbulence statistics are not significantly affected by the 
s-equation as long as cr is taken to be Reynolds-number dependent as suggested by 
Mansour et al. (1989). 
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